Hessian-based model reduction for large-scale systems with initial-condition inputs
نویسندگان
چکیده
Reduced-order models that are able to approximate output quantities of interest of high-fidelity computational models over a wide range of input parameters play an important role in making tractable large-scale optimal design, optimal control, and inverse problem applications. We consider the problem of determining a reduced model of an initial value problem that spans all important initial conditions, and pose the task of determining appropriate training sets for reduced-basis construction as a sequence of optimization problems. We show that, under certain assumptions, these optimization problems have an explicit solution in the form of an eigenvalue problem, yielding an efficient model reduction algorithm that scales well to systems with states of high dimension. Furthermore, tight upper bounds are given for the error in the outputs of the reduced models. The reduction methodology is demonstrated for a large-scale contaminant transport problem. Copyright c © 2000 John Wiley & Sons, Ltd.
منابع مشابه
Hessian-Based Model Reduction for Large-Scale Data Assimilation Problems
Assimilation of spatiallyand temporally-distributed state observations into simulations of dynamical systems stemming from discretized PDEs leads to inverse problems with high-dimensional control spaces in the form of discretized initial conditions. Solution of such inverse problems in “real-time” is often intractable. This motivates the construction of reduced-order models that can be used as ...
متن کاملDecentralized Model Reference Adaptive Control of Large Scale Interconnected Systems with Time-Delays in States and Inputs
This paper investigates the problem of decentralized model reference adaptive control (MRAC) for a class of large scale systems with time varying delays in interconnected terms and state and input delays. The upper bounds of the interconnection terms are considered to be unknown. Time varying delays in the nonlinear interconnection terms are bounded and nonnegative continuous functions and thei...
متن کاملHessian-based model reduction: large-scale inversion and prediction
Hessian-based model reduction was previously proposed as an approach in deriving reduced models for the solution of large-scale linear inverse problems by targeting accuracy in observation outputs. A controltheoretic view of Hessian-based model reduction that hinges on the equality between the Hessian and the transient observability gramian of the underlying linear system is presented. The mode...
متن کاملGeneration Scheduling in Large-Scale Power Systems with Wind Farms Using MICA
The growth in demand for electric power and the rapid increase in fuel costs, in whole of theworld need to discover new energy resources for electricity production. Among of the nonconventionalresources, wind and solar energy, is known as the most promising deviceselectricity production in the future. In this thesis, we study follows to long-term generationscheduling of power systems in the pre...
متن کاملA Variable Structure Observer Based Control Design for a Class of Large scale MIMO Nonlinear Systems
This paper fully discusses how to design an observer based decentralized fuzzy adaptive controller for a class of large scale multivariable non-canonical nonlinear systems with unknown functions of subsystems’ states. On-line tuning mechanisms to adjust both the parameters of the direct adaptive controller and observer that guarantee the ultimately boundedness of both the tracking error and tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007